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Mathematical modelling of moisture-induced panel deformation
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Abstract. A new mathematical model is introduced to describe the moisture-induced deformation in an elastic
panel. The problem for the stresses is found to be singularly perturbed in the aspect ratio squared, the domain being
split into four asymptotic regions. Determination of the matching constants is made possible by the introduction of
a stress function in the boundary layer. Explicit expressions are derived for the stress and deformation in the three-
dimensional problem. The predictions for deformation are compared with experimental results; the agreement is
reasonable. The moment of the moisture concentration is found to be the crucial factor in determining panel warp.
A model, which consists of two coupled parabolic equations, is also proposed for moisture transport in exterior
applications. The disparate time-scales allow the system to be reduced to a single partial differential equation. In
one parameter régime, a multiple-scale analysis further reduces this partial differential equation to an averaged
equation which only requires solution over the long moisture-diffusion time-scale.
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1. Introduction

The absorption of moisture may cause undesirable deformation in various situations (see,
for example, [1]). Table tops are often constructed from cured phenol/formaldehyde resin
reinforced with wood or cellulose fibres. Other applications include exterior wall coverings.
The high natural fibre content makes such panels susceptible to deformation as a result of
moisture variations. In this paper, we investigate the deformation of an elastic panel containing
wood fibres, such as a table top.

Three modes of deformation are illustrated in Figure 1. If the relative humidity is uni-
form, then either swelling or shrinkage takes place, depending on whether the relative humid-
ity is below or above a reference value. However, if the relative humidity is asymmetric,
then warpage is observed. The moisture-induced swelling of a panel is analogous to the
temperature-induced swelling in thermoelasticity [2], the model being very similar. However,
there are two important differences, (i) the swelling due to moisture is not necessarily isotropic
(although we will assume any anisotropy in the elastic properties to be negligible) and (ii) the
time-scale to reach the steady state of the heat equation is typically less than a second, whereas
the diffusion of moisture may take years (see below). The question of how asymmetries in the
concentration of moisture influence the deformation is therefore of great significance.

The panel is assumed to have two planes of symmetry. Therefore, we will only study a
quarter of the panel and apply the appropriate conditions on the planes of symmetry (see
Figure 2). The lateral directions (length and width) are denoted by x and y, the transverse
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Figure 1. A schematic representation of the modes of deformation. The dashed (solid) lines are the perimeter
of the panel before (after) deformation. The circles denote low relative humidity and the droplets high relative
humidity. The modes are (a) no deformation, (b) shrinkage, (c) swelling and (d) warpage.

Figure 2. Two-dimensional representation of a symmetric panel with dimensionless variables. The length and
width are denoted by x̂ and ŷ and the thickness by ẑ (pointing out of the page). The panel is in the region
−1 < x̂ < 1, −W/L < ŷ < W/L and −1 < ẑ < 1 before deformation. The four asymptotic regions are
labelled I to IV. Regions II, III and IV are much smaller than region I as δ � 1.

direction (thickness) by z, the normal stresses by σx , σy and σz and the shear stresses by τxy ,
τxz and τyz. In classical thin-plate theory, the stress components σz, τxz and τyz are taken to
be zero throughout the panel (see [3] and references therein). More recent approaches have
assumed that σz = 0 throughout the panel [4]. We do not make any such assumptions. Our
approach is based on the fullest leading-order balance in the asymptotic limit of small aspect
ratio. Classical thin-plate theory also applies edge boundary conditions in terms of the average
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Table 1. Physical data for a panel containing wood fibres

Symbol Definition Value

ρ density 3 × 103 kg m −3

cp specific heat capacity 2 × 103 J kg−1 K −1

k thermal conductivity 0·3 J s−1 m−1 K −1

E modulus of elasticity 1010 N m−2

D diffusion coefficient 8 × 10−13 m2s−1

L half x-length 1 m

W half y-length 1 m

h half z-length 1·3 × 10−2 m

displacements or of the stress and moment resultants. In this paper, we adopt a pointwise
specification of stress at the boundary (see, for example, [5]).

We also take advantage of the aspect ratio to simplify the models for diffusion of moisture
and conduction of heat. The lateral diffusion and conduction terms in the governing parabolic
partial differential equation are smaller than the transverse diffusion and conduction terms by
a factor of the aspect ratio squared. If the boundary conditions are independent of the lateral
coordinates, then, apart from in the neighbourhood of the lateral boundaries, the leading-
order concentration and temperature are only functions of the transverse direction and time.
Throughout the paper we will adopt the assumption that the concentration and temperature
are only functions of the transverse direction and time.

In interior applications, the two physical time-scales are associated with the diffusion of
moisture through the panel and the elastic deformation; the former is given by h2/D ∼ 4
years and the latter by h

√
ρ/E ∼ 10−6s (where the parameters are given in Table 1). Panels

are typically inspected a few days after being manufactured and we are particularly interested
in explaining any warp which may have taken place over this time-scale. The time-scale for
elastic deformations is so short that we will only retain time derivatives for the diffusion of the
moisture. In exterior applications, the four physical time-scales are the two mentioned above
for interior applications, the time-scale of a day over which the temperature and moisture
uptake are periodic at leading order and the thermal conduction time-scale (ρcph2/k ∼ 300s).

The purpose of this paper is to gain a better understanding of the process of panel defor-
mation. We derive explicit expressions for the stress and deformation in the three-dimensional
problem. One eventual aim is to minimise the warp, which is defined as the deflection of the
centre plane (z = 0) in the transverse direction. The warp depends on the panel characteristics
and moisture distribution. In exterior applications, swelling and shrinkage are the primary
problems and here it is important to develop a model for the moisture transport.

The contents of the paper will now be outlined. Based on the above assumptions, a new
mathematical model is introduced in Section 2. We choose to formulate the model in terms
of stresses; this approach proving more amenable to our analysis. In Section 3, the model is
non-dimensionalised enabling the dominant balances to be identified. The stresses are singu-
larly perturbed in the aspect ratio squared with an outer expansion and three boundary-layer
expansions. A solution is obtained in the boundary layer by introduction of a stress function.
This stress function reduces the solution of six partial differential equations in four unknowns
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to the solution of a single partial differential equation. The matching constants may then be
determined. The displacements are deduced from the stresses. A new mathematical model
for moisture transport in exterior applications, which consists of two parabolic equations for
moisture diffusion and thermal conduction, is introduced in Section 4. The disparate time-
scales allow the leading-order temperature to be expressed as the solution of a linear ordinary
differential equation, an analytical solution being easily determined. In general, the mois-
ture diffusion equation requires a numerical solution. However, in one parameter régime, a
multiple-scale analysis reduces this problem to a partial differential equation over the long
moisture-diffusion time-scale; the daily temperature variations are taken into account by an
effective diffusion coefficient. In Section 5, the predictions for displacement are compared
with experimental results over the time period of a few days. An example of moisture diffusion
in an exterior application is also presented. Finally, Section 6 gives a brief discussion of the
results.

2. Problem formulation

We define the deformation tensor as follows (see, for example, [2])

eij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
, i, j = 1, 2, 3,

where u1 = u, u2 = v and u3 = w are the displacements and x1 = x, x2 = y and x3 = z.
The deformation tensor is assumed to be split up into a part which represents the deformation
caused by elastic effects and a part that represents the deformation caused by expansion of the
material due to swelling, namely

eij = e
(el)
ij + e

(sw)
ij .

We assume that the deformation of the panel due to humidity is linearly dependent on the
concentration of moisture inside the material. Experiments support this assumption (see Sub-
section 5.1.1). This leads to the the following set of equations for e

(sw)
ij

e
(sw)

11 = αxc, e
(sw)

22 = αyc, e
(sw)

33 = αzc, e
(sw)

12 = 0, e
(sw)

13 = 0, e
(sw)

23 = 0,

where c(z, t) is the concentration of moisture (in this section time t is viewed as a parameter),
αx , αy and αz represent the swelling in the x, y and z directions, respectively. Experiments
predict that αx/αz = αy/αz < 1. We note that this model is analogous to thermoelasticity,
except that in this case the strain due to moisture is anisotropic. We apply Hooke’s Law to
relate the deformation tensor to the stress tensor, to obtain

∂u

∂x
= ((1 + ν)σx − ν")

E
+ αxc(z, t),

∂v

∂y
=

(
(1 + ν)σy − ν"

)
E

+ αyc(z, t),

∂w

∂z
= ((1 + ν)σz − ν")

E
+ αzc(z, t),

(1)

τxy = E

2(1 + ν)

(
∂u

∂y
+ ∂v

∂x

)
, τxz = E

2(1 + ν)

(
∂u

∂z
+ ∂w

∂x

)
,

τyz = E

2(1 + ν)

(
∂v

∂z
+ ∂w

∂y

)
,

(2)
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where " = σx +σy +σz, E is the (constant) modulus of elasticity and ν is (constant) Poisson’s
ratio.

The three equations for conservation of momentum are

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
= 0,

∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
= 0,

∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
= 0. (3)

The six compatibility conditions are

(1 + ν)∇2σx + ∂2"

∂x2
= −(αx + ναy)E

(1 − ν)

∂2c

∂z2
, (4)

(1 + ν)∇2σy + ∂2"

∂y2
= −(αy + ναx)E

(1 − ν)

∂2c

∂z2
, (5)

(1 + ν)∇2σz + ∂2"

∂z2
= −(αx + αy)E

(1 − ν)

∂2c

∂z2
, (6)

(1 + ν)∇2τyz + ∂2"

∂y∂z
= 0, (7)

(1 + ν)∇2τxz + ∂2"

∂x∂z
= 0, (8)

(1 + ν)∇2τxy + ∂2"

∂x∂y
= 0, (9)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. The right-hand sides of Equations (4)–(6) are the
non-standard terms in the compatibility conditions. The boundary conditions are

u = ∂v

∂x
= ∂w

∂x
= 0 on x = 0, (10)

σx = τxy = τxz = 0 on x = L, (11)

v = ∂u

∂y
= ∂w

∂y
= 0 on y = 0, (12)

τxy = σy = τyz = 0 on y = W, (13)

τxz = τyz = σz = 0 on z = ±h. (14)

If the concentration is linear c(z, t) = C1 + C2z, we obtain an exact (stress-free) solution,
namely u = αxx(C1 + C2z), v = αyy(C1 + C2z) and w = αz(C1z + C2z2/2) − C2(αxx2 +
αyy2)/2 (cf. [6]).
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3. Asymptotic analysis

3.1. INTRODUCTION

A schematic representation of the four asymptotic regions to be described in this section is
shown in Figure 2. A quarter of the panel to be studied is shown; x̂ = 0 and ŷ = 0 are planes
of symmetry. Region I occupies the majority of the panel. There are two thin boundary-layer
regions II and III which run along x = L and y = W , respectively. A very small corner region
in the neighbourhood of the point x = L, y = W is denoted by region IV. The analysis in
Subsections 3.2 to 3.5 predict the form of the stress tensor in regions I, II and III. Moreover,
we shall show that the solution in these regions is unique. In Subsection 3.6, the displacements
are deduced from the stresses.

3.2. OUTER EXPANSION: REGION I

We seek the outer expansion which is a solution of the overdetermined system (3)–(9). We
transform to dimensionless variables via x = Lx̂, y = Lŷ, z = hẑ, t = τ t̂ , u = δhû, v = δhv̂,
w = hŵ, σx = δ2Eσ̂x , σy = δ2Eσ̂y , σz = δ4Eσ̂z, τxy = δ2Eτ̂xy , τxz = δ3Eτ̂xz, τyz = δ3Eτ̂yz

and c = δ2ĉ/αz, where δ = h/L and τ is the time-scale of a few days. The equations for
conservation of momentum become

∂σ̂x

∂x̂
+ ∂τ̂xy

∂ŷ
+ ∂τ̂xz

∂ẑ
= 0,

∂τ̂xy

∂x̂
+ ∂σ̂y

∂ŷ
+ ∂τ̂yz

∂ẑ
= 0,

∂τ̂xz

∂x̂
+ ∂τ̂yz

∂ŷ
+ ∂σ̂z

∂ẑ
= 0,

and the compatibility conditions transform to

(1 + ν)

(
δ2

(
∂2

∂x̂2
+ ∂2

∂ŷ2

)
+ ∂2

∂ẑ2

)
σ̂x + δ2 ∂2

∂x̂2
(σ̂x + σ̂y + δ2σ̂z) = −(αx + ναy)

αz(1 − ν)

∂2ĉ

∂ẑ2
,

(1 + ν)

(
δ2

(
∂2

∂x̂2
+ ∂2

∂ŷ2

)
+ ∂2

∂ẑ2

)
σ̂y + δ2 ∂2

∂ŷ2
(σ̂x + σ̂y + δ2σ̂z) = −(αy + ναx)

αz(1 − ν)

∂2ĉ

∂ẑ2
,

(1 + ν)

(
δ2

(
∂2

∂x̂2
+ ∂2

∂ŷ2

)
+ ∂2

∂ẑ2

)
δ2σ̂z + ∂2

∂ẑ2
(σ̂x + σ̂y + δ2σ̂z) = −(αx + αy)

αz(1 − ν)

∂2ĉ

∂ẑ2
,

(1 + ν)

(
δ2

(
∂2

∂x̂2
+ ∂2

∂ŷ2

)
+ ∂2

∂ẑ2

)
τ̂yz + ∂2

∂ŷ∂ẑ
(σ̂x + σ̂y + δ2σ̂z) = 0,

(1 + ν)

(
δ2

(
∂2

∂x̂2
+ ∂2

∂ŷ2

)
+ ∂2

∂ẑ2

)
τ̂xz + ∂2

∂x̂∂ẑ
(σ̂x + σ̂y + δ2σ̂z) = 0,

(1 + ν)

(
δ2

(
∂2

∂x̂2
+ ∂2

∂ŷ2

)
+ ∂2

∂ẑ2

)
τ̂xy + δ2 ∂2

∂ŷ∂ẑ
(σ̂x + σ̂y + δ2σ̂z) = 0,

The displacements are determined from the non-dimensional equations

∂û

∂x̂
= σ̂x − ν(σ̂y + δ2σ̂z) + αx

αz

ĉ(ẑ, t̂),
∂v̂

∂ŷ
= σ̂y − ν(σ̂x + δ2σ̂z) + αy

αz

ĉ(ẑ, t̂ ),

∂ŵ

∂ẑ
= δ4σ̂z − νδ2(σ̂x + σ̂y) + δ2ĉ(ẑ, t̂),
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τ̂xy = 1

2(1 + ν)

(
∂û

∂ŷ
+ ∂v̂

∂x̂

)
, δ2τ̂xz = 1

2(1 + ν)

(
∂û

∂ẑ
+ ∂ŵ

∂x̂

)
,

δ2τ̂yz = 1

2(1 + ν)

(
∂v̂

∂ẑ
+ ∂ŵ

∂ŷ

)
.

We obtain the leading-order solution for stresses

σ̂x ∼ −(αx + ναy)

αz(1 − ν2)
ĉ(ẑ, t̂) + Aẑ + B, σ̂y ∼ −(αy + ναx)

αz(1 − ν2)
ĉ(ẑ, t̂ ) + D ẑ + E, (15)

τ̂xy = O(δ2), τ̂xz = O(δ2), τ̂yz = O(δ2) and σ̂z = O(δ2) as δ2 → 0 where A, B, D and E
are unknown constants. The corresponding leading-order displacements are given by

û ∼ (A − νD)x̂ẑ + (B − νE)x̂, v̂ ∼ (D − νA)ŷẑ + (E − νB)ŷ,

ŵ ∼ − x̂2

2
(A − νD) − ŷ2

2
(D − νA),

(16)

where A, B, D and E depend on the moisture concentration.

3.3. BOUNDARY-LAYER EXPANSION AT x = L: REGION II

We now transform to dimensionless variables via x = L − hx̄, σx = δ2Eσ̄x , σy = δ2Eσ̄y ,
σz = δ2Eσ̄z, τxy = δEτ̄xy , τxz = δ2Eτ̄xz and τyz = δEτ̄yz. The equations for conservation of
momentum become

−∂σ̄x

∂x̄
+ ∂τ̄xy

∂ŷ
+ ∂τ̄xz

∂ẑ
= 0, −∂τ̄xy

∂x̄
+ δ2 ∂σ̄y

∂ŷ
+ ∂τ̄yz

∂ẑ
= 0, −∂τ̄xz

∂x̄
+ ∂τ̄yz

∂ŷ
+ ∂σ̄z

∂ẑ
= 0,

and the compatibility conditions transform to

(1 + ν)

(
∂2

∂x̄2
+ δ2 ∂2

∂ŷ2
+ ∂2

∂ẑ2

)
σ̄x + ∂2

∂x̄2
(σ̄x + σ̄y + σ̄z) = −(αx + ναy)

αz(1 − ν)

∂2ĉ

∂ẑ2
,

(1 + ν)

(
∂2

∂x̄2
+ δ2 ∂2

∂ŷ2
+ ∂2

∂ẑ2

)
σ̄y + δ2 ∂2

∂ŷ2
(σ̄x + σ̄y + σ̄z) = −(αy + ναx)

αz(1 − ν)

∂2ĉ

∂ẑ2
,

(1 + ν)

(
∂2

∂x̄2
+ δ2 ∂2

∂ŷ2
+ ∂2

∂ẑ2

)
σ̄z + ∂2

∂ẑ2
(σ̄x + σ̄y + σ̄z) = −(αx + αy)

αz(1 − ν)

∂2ĉ

∂ẑ2
,

(1 + ν)

(
∂2

∂x̄2
+ δ2 ∂2

∂ŷ2
+ ∂2

∂ẑ2

)
τ̄yz + δ2 ∂2

∂ŷ∂ẑ
(σ̄x + σ̄y + σ̄z) = 0,

(1 + ν)

(
∂2

∂x̄2
+ δ2 ∂2

∂ŷ2
+ ∂2

∂ẑ2

)
τ̄xz − ∂2

∂x̄∂ẑ
(σ̄x + σ̄y + σ̄z) = 0,

(1 + ν)

(
∂2

∂x̄2
+ δ2 ∂2

∂ŷ2
+ ∂2

∂ẑ2

)
τ̄xy − δ2 ∂2

∂x̄∂ŷ
(σ̄x + σ̄y + σ̄z) = 0.

The distinguished limit in this boundary layer includes all the terms that balance at leading
order in region I. Therefore, the solution in region II is uniformly valid across regions I and II.
We have the leading-order solution



354 W. R. Smith and H. J. J. Gramberg

σ̄x ∼ ∂2φ

∂ẑ2
, σ̄y ∼ ν

(
∂2

∂x̄2
+ ∂2

∂ẑ2

)
φ − αyĉ(ẑ, t̂ )

αz

+ (D − νA)ẑ + (E − νB),

σ̄z ∼ ∂2φ

∂x̄2
, τ̄xz ∼ ∂2φ

∂x̄∂ẑ
,

(17)

τ̄xy = O(δ2) and τ̄yz = O(δ2) where the stress function φ(x̄, ẑ) (cf. the stress function in the
homogeneous problem 1A of [5] is given by(

∂2

∂x̄2
+ ∂2

∂ẑ2

)2

φ = −(αx + ναy)

αz(1 − ν2)

∂2ĉ

∂ẑ2
, (18)

with the boundary conditions

on ẑ = −1, 1 : ∂2φ

∂x̄∂ẑ
= ∂2φ

∂x̄2
= 0 for 0 < x̄, (19)

on x̄ = 0 : ∂2φ

∂x̄∂ẑ
= ∂2φ

∂ẑ2
= 0 for − 1 < ẑ < 1, (20)

as x̄ → ∞ : ∂2φ

∂x̄∂ẑ
→ 0,

∂2φ

∂ẑ2
→ −(αx + ναy)

αz(1 − ν2)
ĉ(ẑ, t̂ ) + Aẑ + B for − 1 < ẑ < 1. (21)

Conditions (21) were obtained by matching with region I. The displacements are deter-
mined from the non-dimensional equations

−∂û

∂x̄
= δ

(
σ̄x − ν(σ̄y + σ̄z) + αx

αz

ĉ

)
,

∂v̂

∂ŷ
= σ̄y − ν(σ̄x + σ̄z) + αy

αz

ĉ,

∂ŵ

∂ẑ
= δ2

(
σ̄z − ν(σ̄x + σ̄y) + ĉ

)
,

τ̄xy = 1

2(1 + ν)

(
δ

∂û

∂ŷ
− ∂v̂

∂x̄

)
, δ2τ̄xz = 1

2(1 + ν)

(
δ

∂û

∂ẑ
− ∂ŵ

∂x̄

)
,

τ̄yz = 1

2(1 + ν)

(
∂v̂

∂ẑ
+ ∂ŵ

∂ŷ

)
.

We note that there are no rapid changes in the displacements across this boundary layer. The
detailed structure of the stresses in the boundary layer will only be relevant in determining the
matching constants.

3.4. OTHER BOUNDARY-LAYER EXPANSIONS: REGIONS III AND IV

The boundary layer at y = W is similar to the layer at x = L. We transform to dimensionless
variables via y = W −hȳ, σx = δ2Eσ ∗

x , σy = δ2Eσ ∗
y , σz = δ2Eσ ∗

z , τxy = δEτ ∗
xy , τxz = δEτ ∗

xz

and τyz = δ2Eτ ∗
yz. By symmetry the solutions may be derived from (17) by replacing x, y, A,

B, D and E by y, x, D , E , A and B, respectively. The composite expansion across regions I,
II and III may be obtained by adding the leading-order solutions in regions II and III, then
subtracting the leading-order solution in region I.

There is also a boundary layer at x = L and y = W (x̄ > 0 and ȳ > 0). We now
transform to dimensionless dependent variables via σx = δ2Eσ ′

x , σy = δ2Eσ ′
y , σz = δ2Eσ ′

z,
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τxy = δ2Eτ ′
xy , τxz = δ2Eτ ′

xz and τyz = δ2Eτ ′
yz. In this region a full balance is obtained in (3)

–(9). The corner region does not possess an appropriate stress function and the mathematical
theory is less elegant than in regions II and III. Matching the expansion in this region will not
be necessary to determine the unknown constants A, B, D and E or the form of the stresses
in regions II and III.

3.5. MATCHING CONSTANTS

The solution of the boundary-value problem (18)–(21) would determine the matching con-
stants A and B. We derive conditions under which a unique solution exists. The transforma-
tion

ψ = φ −
∫ ẑ

z′=−1

∫ z′

z′′=−1

(
−(αx + ναy)

αz(1 − ν2)
ĉ(z′′, t̂ ) + Az′′ + B

)
dz′′dz′ − ∂φ

∂x̄
(0, −1)x̄

−∂φ

∂ẑ
(0, −1)(ẑ + 1) − φ(0, −1)

leads to the problem(
∂2

∂x̄2
+ ∂2

∂ẑ2

)2

ψ = 0, (22)

with the boundary conditions

on ẑ = −1, 1 : ψ = ∂ψ

∂ẑ
= 0 for x̄ > 0, (23)

on x̄ = 0 : ∂ψ

∂x̄
= 0,

ψ = (αx + ναy)

αz(1 − ν2)

∫ ẑ

z′=−1

∫ z′

z′′=−1
ĉ(z′′, t̂)dz′′dz′ − (ẑ + 1)2

6

(
A(ẑ − 2) + 3B

)
for − 1 < ẑ < 1,

(24)

as x̄ → ∞ : ψ → 0,
∂ψ

∂x̄
→ 0 for − 1 < ẑ < 1, (25)

provided the matching constants A and B are given by

A = 3(αx + ναy)

2αz(1 − ν2)

∫ 1

ẑ=−1
ẑĉ(ẑ, t̂ )dẑ, B = (αx + ναy)

2αz(1 − ν2)

∫ 1

ẑ=−1
ĉ(ẑ, t̂ )dẑ. (26)

The Fredholm alternative guarantees that (22)–(25) has a unique solution. By symmetry, D
and E are given by

D = 3(αy + ναx)

2αz(1 − ν2)

∫ 1

ẑ=−1
ẑĉ(ẑ, t̂)dẑ, E = (αy + ναx)

2αz(1 − ν2)

∫ 1

ẑ=−1
ĉ(ẑ, t̂)dẑ. (27)

A physical approach to determining the matching constants is to apply the divergence
theorem to the first equation in (3) and

∂

∂x
(zσx) + ∂

∂y
(zτxy) + ∂

∂z
(zτxz) = τxz,
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and then non-dimensionalising, to obtain∫ 1

ẑ=−1
σ̂xdẑ = O(δ2),

∫ 1

ẑ=−1
ẑσ̂xdẑ =

∫ ∞

x̄=0

∫ 1

ẑ=−1
τ̄xzdẑdx̄ + O(δ2), (28)

respectively. We note that substituting the solution (17) for τ̄xz will set the first integral on the
right-hand side of the second equation in (28) equal to zero, that is the stress resultant and
bending moment are negligible at leading order.

3.6. DISPLACEMENTS

The displacements may now be deduced by substituting (26)–(27) in (16). In dimensional
form the displacements become

u ∼ 3αxxz

2h3

∫ h

z=−h

zc(z, t)dz + αxx

2h

∫ h

z=−h

c(z, t)dz, (29)

v ∼ 3αyyz

2h3

∫ h

z=−h

zc(z, t)dz + αyy

2h

∫ h

z=−h

c(z, t)dz, (30)

w ∼ −3(αxx2 + αyy2)

4h3

∫ h

z=−h

zc(z, t)dz. (31)

The panel approximately warps into a circular arc along the x-axis and the y-axis with radius

2h3

3αx

∫ h

z=−h
zc(z, t)dz

,
2h3

3αy

∫ h

z=−h
zc(z, t)dz

,

respectively. Experimental observations indicate that panels warp in this manner (see Subsec-
tion 5.1.1). For the special case where concentration is linear, (29)–(31) reduces to the exact
(stress-free) solution (see Section 2).

The presence of the moment of moisture concentration in the expression for warp indicates
the significance of surface effects which take place over a relatively short time-scale (in com-
parison to the time-scale for the diffusion of moisture). We note that the panel warp may be
reduced by decreasing the moment of the moisture concentration or by increasing the panel
thickness.

The parameters αx and αy may be determined from the steady-state extension (or con-
traction) in the length and width in response to a constant increase (or decrease) in relative
humidity across the panel thickness (see Subsection 5.1.1).

It remains to model the moisture concentration in interior and exterior applications. Once
the moisture concentration has been predicted, deformation may be easily calculated using
(29)–(31).

4. Moisture transport in exterior applications

4.1. PROBLEM FORMULATION

We adopt the following assumptions: (i) swelling or shrinkage in the transverse direction is
negligible (w is independent of z at leading order in (31)) and (ii) the material is homogeneous.
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Temperature variations now play an important rôle and must be included. The moisture-
transport model can be described by two dependent variables: the moisture concentration
c(z, t) and the temperature T (z, t). These satisfy the following equations together with the
appropriate constitutive assumption for the moisture diffusion coefficient D(T )

∂c

∂t
= ∂

∂z

(
D

∂c

∂z

)
with D = D0 exp

(
−Tr

T

)
,

ρcp

∂T

∂t
= ∂

∂z

(
k

∂T

∂z

)
,

where cp is the specific heat capacity, k is the thermal conductivity, D0 is the diffusion
coefficient at temperatures much larger than the reference temperature Tr . These equations
require boundary conditions at z = ±h. A décor layer is usually present on the surface of a
panel. These layers are typically very thin and play no rôle in the deformation of the panel.
However, the décor material is also chosen to reduce the diffusion of moisture into the panel,
so Robin conditions are necessary. The sides of the panel may or may not be well ventilated,
so the ambient moisture concentration and temperature are not identical on z = ±h. Another
asymmetry arises from absorbed solar radiation on one side of the panel. We assume a balance
of moisture and thermal flux at the décor boundaries, so that

on z = h : D
∂c

∂z
= H(cR(t) − c), −k

∂T

∂z
= γ (T − TR(t)) − S(t),

on z = −h : D
∂c

∂z
= H(c − cL(t)), −k

∂T

∂z
= γ (TL(t) − T ),

with

H = H0 exp

(
−TH

T

)
,

where H0 is the mass-transfer coefficient at temperatures much larger than the reference
temperature TH , γ is the heat-transfer coefficient, cL(t) (cR(t)) is the ambient moisture con-
centration on the left-hand (right-hand) side, TL(t) (TR(t)) is the ambient temperature on the
left-hand (right-hand) side and S(t) is the thermal flux resulting from absorbed radiation at
the décor surface. The initial conditions are taken to be

c(z, 0) = cR(0), T (z, 0) = TR(0).

4.2. NON-DIMENSIONALISATION

We now non-dimensionalise these equations enabling the dominant balances to be identified.
The maximum value of the moisture uptake is denoted by cmax, a representative temperature
rise by .T and the maximum value of the thermal flux from radiation by Smax. We introduce
a time-scale τ ∗ = 1 day/2π . We transform to dimensionless variables via z = hẑ, t = τ ∗t∗,
c = cR(0) + (cmax − cR(0))c∗, T = TR(0) + .T T ∗, cL(t) = cR(0) + (cmax − cR(0))c∗

L,
cR(t) = cR(0) + (cmax − cR(0))c∗

R, TL(t) = TR(0) + .T T ∗
L , TR(t) = TR(0) + .T T ∗

R and
S = SmaxS∗. The problem becomes
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Table 2. Dimensionless parameters for moisture transport in ex-
terior applications (where some values are reliable and some best
estimates)

Symbol Definition Typical Value

ν .T /TR(0) 7 × 10−2

β Tr.T /TR(0)2 1

βH TH .T /TR(0)2 1

D̄ D0τ∗ exp(−Tr/TR(0))/h2 10−4

F kτ∗/ρcph2 50

D̄1/2K̄ D0 exp ((TH − Tr )/TR(0)) /hH0 7 × 10−2

B̄/F γ h/k 2 × 10−2

Q̄/F hSmax/k.T 2 × 10−2

r 2πτ∗/D̄(1 year) 20

∂c∗

∂t∗ = D̄
∂

∂ẑ

(
exp

(
βT ∗

1 + νT ∗

)
∂c∗

∂ẑ

)
, (32)

∂T ∗

∂t∗ = F
∂2T ∗

∂ẑ2
, (33)

with boundary conditions

on ẑ = 1 : D̄1/2K̄ exp

(
βT ∗

1 + νT ∗

)
∂c∗

∂ẑ
= exp

(
βH T ∗

1 + νT ∗

)(
c∗

R(t∗, t̃) − c∗) , (34)

on ẑ = 1 : −∂T ∗

∂ẑ
= B̄

F
(T ∗ − T ∗

R (t∗, t̃ )) − Q̄

F
S∗(t∗, t̃), (35)

on ẑ = −1 : D̄1/2K̄ exp

(
βT ∗

1 + νT ∗

)
∂c∗

∂ẑ
= exp

(
βH T ∗

1 + νT ∗

)(
c∗ − c∗

L(t∗, t̃ )
)

, (36)

on ẑ = −1 : −∂T ∗

∂ẑ
= B̄

F
(T ∗

L(t∗, t̃ ) − T ∗), (37)

and initial conditions

c∗(ẑ, 0, 0) = 0, T ∗(ẑ, 0, 0) = 0. (38)

The dimensionless constants ν, β, βH , D̄, F , K̄ , B̄ and Q̄ are defined, and typical values
given, in Table 2; the constraint D̄ � 1/F � 1 typically holds in practice. The thermal con-
duction time-scale (ρcph2/k ∼ 300s), the time-scale of one day and the diffusion time-scale
(h2 exp(Tr/TR(0))/D0 ∼ 4 years) are the three relevant time-scales in exterior applications.
Time is described by two variables: the intermediate time-scale t∗ which corresponds to the
daily periodic variation and the longest time-scale t̃ (t̃ = D̄t∗) which corresponds to diffusion.
The solution is periodic in t∗, with period 2π , at leading order.
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4.3. ASYMPTOTIC ANALYSIS

4.3.1. Temperature
We introduce an expansion for temperature of the form T ∗ ∼ T0(t∗, t̃) + T1/F . Equation (33)
implies

∂T1

∂ẑ
= ∂T0

∂t∗ ẑ + A1(t∗, t̃ ),

which may be substituted in (35) and (37) to give

∂T0

∂t∗ + B̄T0 = B̄

2
(T ∗

L(t∗, t̃) + T ∗
R(t∗, t̃ )) + Q̄

2
S∗(t∗, t̃ ),

with solution

T0 = exp(−B̄t∗)

∫ t∗

s=0
exp(B̄s)

[
B̄

2
(T ∗

L (s, t̃) + T ∗
R (s, t̃)) + Q̄

2
S∗(s, t̃)

]
ds.

It remains to obtain the moisture concentration which depends on the value of βH − β.

4.3.2. Moisture concentration: βH − β = O(1)

In this parameter régime the leading-order term for temperature must be used in combination
with a numerical solution of (32), (34), (36) and (38)1. The numerical solution has to take
into account the short time-scale of a day (in boundary layers adjacent to the décor layer with
length O(D̄1/2)) and the long time-scale of 4 years (throughout the panel).

4.3.3. Moisture concentration: βH − β = o(1)

Inner expansion

A multiple-scale expansion in time and boundary-layer expansion in space is possible in this
parameter régime. Firstly, we consider the boundary layers. The inner expansions at the two
boundaries ẑ = ±1 are similar, therefore we will only describe the problem in the neighbour-
hood of ẑ = −1. We perform the stretching transformation ẑ = −1 + D̄1/2Z and introduce
the expansion c∗ ∼ C0(Z, t∗, t̃ ), to obtain the leading-order problem

∂C0

∂t∗ = exp

(
βT0

1 + νT0

)
∂2C0

∂Z2
, (39)

with boundary conditions

K̄
∂C0

∂Z
= C0(0, t∗, t̃ ) − c∗

L(t∗, t̃ ), C0 → cBL(t̃) as Z → ∞, (40)

where cBL(t̃) is to be determined. The initial condition is C0(Z, 0, 0) = 0. Periodicity in t∗
demands that∫ 2π

0

∂C0

∂t∗ dt∗ = 0,

so (39) and (40)2 implies∫ 2π

0
exp

(
βT0

1 + νT0

)
C0dt∗ = A0(t̃).
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Integrating the boundary conditions (40), we obtain the result

cBL(t̃) =< c∗
L(t∗, t̃ ) > / < 1 >,

and similarly

cBR(t̃) =< c∗
R(t∗, t̃) > / < 1 >,

where we define the average

< · >= 1

2π

∫ 2π

0
· exp

(
βT0

1 + νT0

)
dt∗.

We note that the expressions derived for cBL(t̃) and cBR(t̃) are also valid in the limit K̄ � 1
irrespective of the value of βH − β.

Outer expansion

We now consider the outer region and introduce the expansion c∗ ∼ c0(ẑ, t̃ ). Elimination
of the secular terms in (32) leads to the equation for the leading-order term for moisture
concentration

∂c0

∂t̃
=< 1 >

∂2c0

∂ẑ2
,

with the boundary conditions c0(−1, t̃ ) = cBL(t̃) and c0(1, t̃ ) = cBR(t̃). The averaged term
< 1 > is the effective moisture diffusion coefficient. The change of variable defined by

t1 =
∫ t̃

0
< 1 > dt̃ ′, (41)

results in a problem with constant diffusion coefficient for the moisture concentration at
leading order, namely

∂c0

∂t1
= ∂2c0

∂ẑ2
, c0(−1, t1) = cT L(t1), c0(1, t1) = cT R(t1), c0(ẑ, 0) = 0, (42)

where cT L(t1) = cBL(t̃) and cT R(t1) = cBR(t̃). The solution of (42) is given by

c0(ẑ, t1) =
∫ t1

0

∞∑
n=1

(−1)n−1(2n − 1)π exp

(
−(2n − 1)2 π2

4
s

)
cos

(
(2n − 1)

π

2
ẑ
)

(cT R(t1 − s) + cT L(t1 − s))

2
ds +

∫ t1

0

∞∑
n=1

(−1)nnπ exp
(−n2π2s

)
sin

(
nπẑ

)
(cT R(t1 − s)

−cT L(t1 − s))ds. (43)

A representative example of the solution when βH − β = o(1) is described in Subsection 5.2.
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Figure 3. A schematic representation of the experimental set-up. The shaded region is water at 23 ◦C. Experiments
take place in a climate room where the temperature is maintained at 23 ◦C throughout. The centre of the panel
warps down in (a).

Figure 4. Comparison of the first term in the asymptotic expansion and experimental measurements (courtesy of
TRESPA International BV) for the moisture induced warp of a panel with décor at x = 23cm.

5. Results

5.1. EXPERIMENTAL VALIDATION

5.1.1. Measurement of panel warp
We now outline the experimental measurement of panel warp. A test sample is placed over
a container filled with water (as shown in Figure 3a). The container with test sample is then
stored in a climate room with a relative humidity of 50% and a temperature of 23 ◦C. In this
way the test sample is exposed to an asymmetric environment of 50% relative humidity on
the top side and 100% on the bottom side (with the centre of the panel being displaced down
in Figure 3a). At regular time intervals the warp of the test sample is measured. The panel
is placed symmetrically on two fixed supports in order to perform the measurements. The
panel warp is then measured in the middle of the two supports as the deviation from the plane
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Figure 5. The first term in the asymptotic expansion for moisture concentration in a panel with décor. The surface
at z = 6·5mm is exposed to a relative humidity of 6·5vol%. The interval −6.5mm < z < −2mm is not shown as
the moisture concentrations are indistinguishable from zero.

containing the two support points (see Figure 3b). Experimental observations are shown in
Figure 4.

The moisture uptake corresponding to a given relative humidity is required as a boundary
condition to the moisture transport model (discussed below). In order to assess the moisture
uptake at 50% and 100% relative humidity (and 23 ◦C), test samples were stored in a climate
room over long time periods. The moisture uptake was measured after a steady state had been
attained. The swelling was also recorded at various relative humidities in the range 50%..100%
in a similar manner and found to be a linear function of the equilibrium moisture uptake.

5.1.2. Moisture transport in a climate room
We again adopt assumptions (i) and (ii) of Section 4 and we assume the temperature is con-
stant. We also assume that the concentration of water c(z, t) starts at a given constant level
cinit, a constant concentration cinit is applied at the lower side and a constant concentration cU

at the upper side. The governing equation is the diffusion equation

∂c

∂t
= ∂

∂z

(
D

∂c

∂z

)
,

where D is the (constant) diffusion coefficient. A Robin boundary condition is required at
z = h and z = −h, namely

D
∂c

∂z
(h, t) = H(cU − c(h, t)), D

∂c

∂z
(−h, t) = H(c(−h, t) − cinit),

where H is the (constant) mass-transfer coefficient. The initial condition is c(z, 0) = cinit. We
now transform to dimensionless variables via z = hẑ, t = τ t̂ and c = cinit + (cU − cinit)c̄. The
problem becomes
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Figure 6. The effective moisture diffusion coefficient 〈1〉 and change of variable t1 as a function of t̃ .

∂c̄

∂ t̂
= ε2 ∂2c̄

∂ẑ2
,

with the boundary conditions

K
∂c̄

∂ẑ
(1, t̂ ) = (1 − c̄(1, t̂ )), K

∂c̄

∂ẑ
(−1, t̂ ) = c̄(−1, t̂ ),

and initial condition c̄(ẑ, 0) = 0. The constant ε2 = Dτ/h2 is characteristic of the moisture
diffusion length-scale ((Dτ)1/2) in time τ and K = D/hH . Typically, the parameter ε is small
for the short time-scales of a few days in which we are primarily interested. The solution now
depends on the order of magnitude of K. If K = O(1) then the problem is self-similar and a
uniformly valid approximation (in dimensional form) is given by (see [7, Section 2.8])

c ∼ cinit + (cU − cinit)H

[
−(h − z)

D
erfc

(
h − z

2(Dt)1/2

)
+ 2

√
t

πD
exp

(−(h − z)2

4Dt

)]

as ε → 0,

(44)

however, if K = O(ε), then we obtain

c ∼ cinit +(cU − cinit)

[
− exp

(
H(h − z)

D

)
exp

(
H 2t

D

)
erfc

(
H

√
t√

D
+ (h − z)

2
√

Dt

)

+ erfc

(
h − z

2
√

Dt

)]
as ε → 0.

(45)
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Figure 7. The leading-order moisture uptake at the boundary cBL(t̃), at a quarter distance c0(±0·5, t̃ ) and at the
centre c0(0, t̃ ) as a function of t̃ .

The solution (44) may be derived from (45) in the limit K → ∞.
The mass-transfer coefficient H may be determined from the experimental measurements

of the panel warp by a least-squares fit. In general, the moisture concentration itself is difficult
to measure with experiments. The concentration of moisture in a panel obtained from (45) is
shown in Figure 5 for times varying from a few days to two months.

5.1.3. Discussion
The panel warp calculated with (31) is shown in Figure 4 corresponding to the moisture
concentration in Equation (45). The agreement with experimental results is reasonable even
for time periods longer than a few weeks when the solution for moisture concentration is at
the limit of its range of validity. We note that the solution (29)–(31) is also limited to the small
deformations of linear elasticity.

5.2. AN EXTERIOR APPLICATION

We now consider an example of an exterior application with β = βH . The arbitrary functions
in Section 4 are assumed to be of the form c∗

L(t∗, t̃) = c∗
R(t∗, t̃ ) = sin(t∗) + sin(rt̃ ) for the

ambient moisture concentration, T ∗
L (t∗, t̃ ) = T ∗

R(t∗, t̃ ) = sin(t∗) + sin(rt̃ ) for the ambient
temperature and S∗(t∗, t̃) = sin(t∗)(1 + sin(rt̃ )) for the absorbed thermal radiation; r being
defined in Table 2. Rather than computing (43), it is simpler from a numerical viewpoint to
solve (42) directly with finite differences. The effective moisture diffusion coefficient and cor-
responding change of variables to t1 (see (41)) are shown in Figure 6. As expected the effective
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Figure 8. The leading-order moisture uptake as a function of ẑ at two different times. The two times correspond
to the maximum and the minimum of c0(0, t̃ ) in the periodic steady state.

moisture diffusion coefficient is largest in summer and smallest in winter. The summer values
of ambient concentration will therefore have much larger influence on the moisture uptake
than the winter values. The moisture uptake at ẑ = ±1, ẑ = ±0·5 and ẑ = 0 as a function
of t̃ are shown in Figure 7. We see that there is an initial transient of approximately one year
before the periodic steady state is attained. The maximum and minimum in the periodic steady
state at ẑ = ±0·5 lags ẑ = ±1 and similarly ẑ = 0 lags ẑ = ±0·5 by a significant time. We
therefore expect the shrinkage and swelling to lag in a similar manner. The leading-order
moisture uptake as a function of ẑ at two times corresponding to the maximum and minimum
of c0(0, t̃ ) are shown in Figure 8.

6. Concluding remarks

This paper has established a model for a material which swells by different amounts in
the coordinate directions in response to moisture variations. This property is a result of the
natural-fibre content and the manufacturing process. The material is anisotropic. However, we
have modelled any anisotropy in the elastic properties as negligible. This approximation is
justified by comparison with experimental results. The response to an increase in moisture
concentration may be viewed as an anisotropic forcing term on an isotropic elastic body.

The moisture diffusion time-scale is four years, but warp has been observed a few days after
manufacture. This apparent paradox has been explained by the discovery that the deflection
of the centre plane of the panel is proportional to the moment of the moisture concentra-
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tion. Therefore, small amounts of moisture adjacent to the surface of the panel have greater
significance.

In exterior applications, the diffusion of moisture in the panel is complicated by temper-
ature and moisture variations in the surrounding atmosphere. Once a panel is installed, there
is an initial transient of approximately one year before a periodic steady state is attained. The
periodic steady state is characterised by the moisture concentration in the panel (and therefore
the swelling) lagging the atmospheric conditions. The maximum swelling of exterior panels
will be observed several weeks after the most humid day of the year.
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